
Assertion Generation through Active Learning

Long H. Pham, Ly Ly Tran Thi, and Jun Sun

ISTD, Singapore University of Technology and Design, Singapore

Abstract. Program assertions are useful for many program analysis tasks. They

are however often missing in practice. Many approaches have been developed

to generate assertions automatically. Existing methods are either based on gen-

eralizing from a set of test cases (e.g., DAIKON), or based on some forms of

symbolic execution. In this work, we develop a novel approach for generating

likely assertions automatically based on active learning. Our targets are complex

Java programs which are challenging for symbolic execution. Our key idea is to

generate candidate assertions based on test cases and then apply active learning

techniques to iteratively improve them. We evaluate our approach using two sets

of programs, i.e., 425 methods from three popular Java projects from GitHub and

10 programs from the SVComp repository. We evaluate the ‘correctness’ of the

assertions either by comparing them with existing assertion-like checking condi-

tions, or by comparing them with the documentation, or by verifying them.

1 Introduction

Assertions in programs are useful for many program analysis tasks [15]. For instance,

they can be used as oracles for program testing, or correctness specification for static

program verification. They are however often insufficiently written in practice [15]. It

is thus desirable to generate them automatically.

A variety of approaches have been developed for assertion generation. We broadly

divide them into three categories. The approaches in the first category rely on summa-

rizing and generalizing a set of test cases. One well-known example is DAIKON [11].

DAIKON takes a set of test cases as inputs and summarizes the program states at a given

program location based on a set of predefined templates. Typically, these approaches

are scalable and thus can be applied to complex programs. However, it is also known if

only a limited number of test cases are available, the generated assertions are often not

‘correct’ [32]. Unfortunately, as reported in [4, 5], the number of test cases available in

practice is often limited.

The second category contains approaches which rely on some forms of symbolic

execution or constraint solving, e.g., [10, 6, 3]. These approaches often provide some

guarantee on the quality of the generated assertions. However, since programs must be

encoded as symbolic constraints and be solved, these approaches are often limited to

relatively simple programs.

The third category combines the techniques of the two categories, e.g., the guess-

and-check approaches [25, 24, 13]. The idea is to guess candidate assertions and then

check their correctness based on symbolic execution or similar techniques. If the can-

didate assertion is found to be incorrect, a counterexample is identified as a new test

case and used to refine the candidate assertion. Similarly, the work in [35] generates

candidate invariants and then instruments the candidate invariants into the programs.

Afterwards, symbolic execution is applied to generate new test cases, which are used

to improve the candidates. Similar to those approaches in the second category, these

approaches are often limited to relatively simple programs as symbolic execution is

applied.

In this work, we propose a new approach for assertion generation. Our targets are

complex Java programs and thus we would like to avoid heavy-weight techniques like

symbolic execution. We also would like to overcome the issue of not having sufficiently

many test cases in practice and be able to generate ‘correct’ assertions. Briefly, our

approach works as follows. We first learn some initial candidate assertions using a set of

templates and machine learning algorithms (e.g., [7] and Support Vector Machine [23]).

Next, we apply active learning techniques to improve the candidate assertions. That

is, we automatically generate new program states based on the candidate assertions.

Then, we re-learn the assertion using the testing results from new states and iteratively

improve the assertions until they converge. Compared to existing approaches, our main

idea is to automatically mutate program states based on active learning to refine the

candidate assertions. This is motivated by recent studies in [30, 31] which show that

active learning can help to learn ‘correct’ predicates (i.e., with bounded error) with a

small number of labeled data.

Our approach has been implemented in a tool named ALEARNER. To evaluate the

effectiveness and efficiency of ALEARNER, we conduct two sets of experiments. Firstly,

we apply ALEARNER to 425 methods from three popular Java projects from GitHub.

ALEARNER successfully generates 243 assertions. We manually inspect the generated

assertions and confirm that 158 of them (65%) are correct, i.e., necessary and suffi-

cient to avoid failure. Furthermore, we notice that 186 out of the 425 methods con-

tain some assertion-like checking condition at the beginning of the method. For 116 of

those methods (62%), ALEARNER successfully generates an assertion identical to the

condition. Secondly, we apply ALEARNER to a set of 10 programs from the software

verification competition (SVComp [2]). Given the postcondition in the program, we

use ALEARNER to automatically learn a precondition, without any user-provided test

cases. We show that for 90% of the cases, ALEARNER learns a precondition which is

weaker than the user-provided precondition yet strong enough to prove the postcondi-

tion. Lastly, we evaluate the efficiency of ALEARNER and show that the computational

overhead is mild.

The remainder of the paper is organized as follows. Section 2 illustrates how our

approach works with examples. Section 3 presents details of each step in our approach.

Section 4 presents the implementation of ALEARNER and evaluation results. Section 5

discusses the related work. Section 6 concludes.

2 Overview with Examples

In the following, we briefly describe how our approach works. Without loss of gener-

ality, we assume the input to our method is a Java method with multiple parameters

(which may call other methods) as well as a set of user-provided test cases. For in-

public MonthDay withMonthOfYear(int monthOfYear) {

int[] newValues = getValues();

newValues = getChronology().monthOfYear().

set(this,MONTH_OF_YEAR,newValues,monthOfYear);

return new MonthDay(this, newValues);

}

...

public static void verifyValueBounds(DateTimeField field, int value,

int lowerBound, int upperBound) {

if ((value<lowerBound)||(value>upperBound)) {

throw new IllegalFieldValueException(

field.getType(), Integer.valueOf(value),

Integer.valueOf(lowerBound), Integer.valueOf(upperBound));

}

}

Fig. 1. Example from class MonthDay in project JodaOrg/joda-time

stance, assume that the input is the method withMonthOfY ear shown in Figure 1,

which is a method from the joda-time project on GitHub. This method returns a new

MonthDay object based on the current object and sets its month value as the input

monthOfY ear. A series of methods are invoked through inheritance and polymor-

phism to create a new MonthDay object, including method verifyV alueBounds
in class FieldUtils (shown in Figure 1). Method verifyV alueBounds checks if the

value of monthOfY ear is within the range defined by the parameters lowerBound
(i.e., 1) and upperBound (i.e., 12).

Our first step is data collection. Given a program location in the given program,

we instruct the program to output the program states during the execution of the test

cases. We collect two sets of program states, one containing program states which lead

to failure and the other containing the rest. In the above example, assume that we are

interested in generating a precondition of method monthOfY ear, i.e., an assertion at

the beginning of the method. In the project, there are three user-provided test cases for

this method, with the input monthOfY ear being 5, 0, and 13 respectively. The latter

two test cases result in failure, whereas the first runs successfully. Thus, we have two

sets of program states, one containing the state of monthOfY ear being 0 or 13 and

the other containing the state of monthOfY ear being 5.

The second step is classification. Given the two sets of program states, we apply

learning techniques to identify predicates which could perfectly classify the two sets.

In ALEARNER, we support two learning algorithms to identify such predicates. The

first algorithm uses the predefined templates and applies the learning algorithm in [7] to

learn boolean combination of the templates. The second one is inspired by [27], which

applies Support Vector Machine (SVM) to learn conjunction of linear inequalities as

classifiers. In our example, given the two sets of program states, applying the first algo-

rithm, ALEARNER tries the templates one by one and identifies a candidate assertion

monthOfY ear = 5 (i.e., when monthOfY ear is 5, there is no failure). While this

assertion is consistent with the three test cases, it is ‘incorrect’ and the reason is the lack

of test cases. For instance, if we are provided with a test case with monthOfY ear be-

ing 4, assertion monthOfY ear = 5 would not be generated. This shows that assertion

public Days minus(Days days) {

if (days == null) return this;

return minus(days.getValue());

}

public Days minus(int days) {

return plus(FieldUtils.safeNegate(days));

}

Fig. 2. Example from class Days in project JodaOrg/joda-time

generation based only on a limited set of test cases may not be effective. Using SVM,

we learn the assertion: 3 ≤ monthOfY ear ≤ 9.

The third step is active learning. To solve the above problem, we apply active learn-

ing techniques to iteratively improve the assertion until it converges. This is necessary

because the assertion should define the boundary between failing program states from

the rest, whereas it is unlikely that the provided (or generated) test cases are right on the

boundary. Active learning works by generating new states based on the current bound-

ary. Then, we execute the program with new states to check whether they lead to failure

or not (a.k.a. labeling). Step 2 and subsequently step 3 are then repeated until the asser-

tion converges.

For simplicity, we show only how the candidate assertion 3 ≤ monthOfY ear ≤ 9
is refined in the following. Applying active learning, we generate two new states where

monthOfY ear is 3 and 9 respectively. After testing, since both states run successfully,

the two sets of program states are updated so that the passing set contains the states of

monthOfY ear being 3, 5 and 9; and the failing set contains 0 and 13. Afterwards, the

following assertion is identified using SVM: 2 ≤ monthOfY ear ≤ 11. Repeating the

same process, we generate new states where monthOfY ear is 2 and 11 and get the

assertion: 1 ≤ monthOfY ear ≤ 12. We then generate states where monthOfY ear
is 1 and 12 and learn the same assertion again. This implies that we have converged and

thus the assertion is output for user inspection.

The above example shows a simple assertion which is generated using ALEARNER.

In comparison, because withMonthOfY ear calls many methods as well as inheri-

tance and polymorphism in the relevant classes, applying assertion-generation methods

based on symbolic execution is non-trivial1. ALEARNER can also learn complex as-

sertions with disjunction and variables from different domains. An example is the pre-

condition generated for method minus in class Days shown in Figure 2. Each Days
object has a field iPeriod to represent the number of days. The method receives a

Days object days as input. If days is null, the method returns the this object. Oth-

erwise, it negates the number of days in days. Then, it returns a new Days object

whose number of days is the sum of the negation and the number of day in the this
object. An arithmetic exception is thrown when the number of days of days equals

Integer.MIN V ALUE or when the result of the sum is overflow. ALEARNER gen-

erates the assertion: days = null || (this.iPeriod − days.iPeriod is not overflow
&& days.iPeriod 6= Integer.MIN V ALUE) for the method.

1 Refer to recent development on supporting polymorphism in symbolic execution in [17].

3 Detailed Approach

In this section, we present the details of each step in our approach. Recall that the in-

puts include a Java program in the form of a method with multiple parameters and a

set of test cases. The output is the assertions at different program locations. We assume

the program is deterministic with respect to the testing results. This is necessary be-

cause our approach learns based on the testing results, which become unreliable in the

presence of non-determinism.

Step 1: Data Collection Our goal is to dynamically learn likely assertions at different

program locations. To choose program locations to learn, we build a control flow graph

of the program and choose the locations heuristically based on the graph. For instance,

we generate assertions at the beginning of a method or the end of a loop inside a method.

Another candidate program location is the beginning of a loop. However, an assertion in

a loop or a recursion must be inductive. Learning inductive assertions is itself a research

topic (e.g., [28, 24]) and we leave it to future work.

We instruct at the program location with statements to output the program states

during the execution of the test cases. In ALEARNER, there can be two sources of test

cases. The first group contains the user-provided test cases. However, our experience is

that often user-provided test cases are rather limited and they may or may not contain the

ones which result in failure. The second group contains random test cases we generate

using the Randoop approach [20]. We remark that Randoop is adopted because it is

relatively easy to implement.

To collect only relevant features of the program states, we identify the relevant vari-

ables. Given a failed test case, we identify the statement where the failure occurs and

find all the variables which it has a data/control dependence on through dynamic pro-

gram slicing. Among these variables, the ones accessible at the program location are

considered relevant. Next, we extract features from the relevant variables. For variables

of primitive types (e.g., int, float), we use their values. For reference type variables,

we can obtain values from the fields of the referenced objects, the fields of those fields,

or the returned value of the inspector methods in the class. As a result, we can obtain

many values from a single variable. In ALEARNER, we set the bound on the number of

de-referencing to be 2 by default, i.e., we focus on the values which can be accessed

through two or less de-referencing. This avoids the problem of infinite de-referencing

in dealing with recursive data types.

After executing the test cases with the instrumented program, we obtain a set of

program states, in the form of an ordered sequence of features (a.k.a. feature vectors).

We then categorize the feature vectors into two sets according to the testing results, one

denoted as S+ containing those which do not lead to failure and the other denoted by

S− containing the rest. Note that the feature vectors obtained from different test cases

may not always have the same dimension. For instance, in one test case, a reference type

object might have the value null, whereas it may not be null in another test case so that

we can obtain more features. We then apply standard techniques to normalize feature

vectors in S+ and S−, i.e., we mark missing features as null. With this normalization,

all vectors have the same number of features.

Table 1. Sample Templates for assertions

Sample Template Sample Selective Sampling

x * y = z predefined values for x, y, and z

x = c (x = c ± 1)

x != c (x = c ± 1)

x = true (x = true); (x = false)

ax + by = c solve for x based on y and vice versa

Step 2: Classification The feature vectors in S+ are samples of ‘correct’ program be-

haviors, whereas the ones in S− are samples of ‘incorrect’ program behaviors. Intu-

itively, an assertion should perfectly classify S+ from S−. We thus borrow ideas from

the machine learning community to learn the assertions through classification. We sup-

port two classification algorithms in this work. One applies the learning algorithm in [7]

to learn boolean combination of propositions generated by a set of predefined templates

inspired by DAIKON. The other applies SVM to learn assertions in the form of conjunc-

tions of linear inequalities. Both algorithms are coupled with an active learning strategy

as we discuss later.

Template based Learning We first introduce our template based assertion generation

approach. We adopt most of the templates from DAIKON. In the following, we first in-

troduce the primitive templates (i.e., propositions without logical connectors) supported

by ALEARNER and then explain how to learn boolean combinations of certain primitive

templates.

A few sample primitive templates are shown in Table 1. In total, we have 120 prim-

itive templates and we refer the readers to [1] for the complete list. A template may

contain zero or more unknown coefficients which can be precisely determined with a

finite set of program states. For instance, the template which checks whether two vari-

ables have the same value has zero coefficient and we can determine whether it is valid

straightforwardly; the template which checks whether a variable has a constant value

has one unknown coefficient (i.e., the constant value) which can be determined with

one program state in S+. Some templates have multiple coefficients, e.g., the template

ax + by = c where x and y are variables and a, b, c are constant coefficients. We need

at least three pairs of x, y values in S+ to identify the values of a, b, and c.

In order to generate candidate assertions in the form of a primitive template, we

randomly select a sufficient number of feature vectors from S+ and/or S− and compute

the coefficients. Once we compute the values for the coefficients, we check whether the

resultant predicate is valid. A template with concrete values for its coefficients is called

valid if it evaluates to true for all feature vectors in S+ and evaluates to false for all

feature vectors in S−. If feature vectors are not enough to identify the coefficients, or

the template requires more features than those in the feature vectors, or the template is

not applicable to the input values, the template is skipped. If a template requires only a

subset of the features in the feature vectors, we try all subsets of the features.

Like DAIKON, we limit the number of variables in the primitive templates to be

no more than 3 and hence the number of combinations of features is cubic in the total

number of features. We remark that because we learn from S− as well, we are able to

support templates which are not supported by DAIKON. One example is the template

x 6= a (where a is an unknown coefficient). With only program states in S+, it is impos-

sible to identify the value of a (since there are infinitely many possibilities). However,

since the negation of x 6= a must be satisfied by program states in S−. With one feature

vector from S−, we can precisely determine the value of a.

We sometimes need assertions in the form of boolean combinations of primitive

templates. In the following, we describe how to learn boolean combination of primitive

templates. We start with identifying a set of predicates (in a form defined by a primitive

template) which correctly classify some feature vectors in S+ or S−. For instance, we

have the predicate x = y if there is a feature vector such that x = y in S+ or x 6= y in

S−. In general, it might be expensive to identify all of such predicates if the primitive

template has multiple coefficients. For instance, in order to identify all such predicates

in the form of ax+ by = c, we must try all combinations of three feature vectors in S+

to identify the value of a, b and c, which has a complexity cubic in the size of S+. We

thus limit ourselves to predicates defined by primitive templates with zero coefficient

for learning boolean combination of the templates.

Once we have identified the set of predicates, we apply the algorithm in [7] to iden-

tify a boolean combination of them which perfectly classifies all feature vectors in S+

and S−. Informally, we consider each feature vector in S+ and S− as data points in

certain space. Each data point in S+ is connected to every one in S− by an edge. The

problem then becomes finding a subset of the predicates (which represent lines in this

space) such that every edge is cut by some predicates. The algorithm in [7] works by

greedily finding the predicate which can cut the most number of uncut edges until all

edges are cut. The set of predicates identified this way partition the space into regions

which only contains data points in S+ or S− but not both. Each region is a conjunction

of the predicates. The disjunction of all regions containing S+ is a perfect classifier.

We remark that DAIKON generates multiple assertions at a program location, which are

logically in conjunction, and has limited support for disjunctive assertions.

SVM-based Learning In addition to template-based learning, we support learning of

assertions in the general form of c1x1+c2x2+ · · · ≥ k (a.k.a. a half space) where there

might be 1, 2, 3, or more variables in the expression. To generate such an assertion, we

need to find coefficients c1, c2, · · · , k such that c1x1 + c2x2 + · · · ≥ k for all feature

vectors in S+ and c1x1 + c2x2 + · · · < k for all feature vectors in S−. With a finite

set of feature vectors, we may have infinitely many coefficients c1, c2, · · · , k satisfying

the above condition. In this work, we apply SVM classification [23] to identify the

coefficients for this template.

SVM is a supervised machine learning algorithm for classification and regression

analysis. We use its binary classification functionality, which works as follows. Given

S+ and S−, it tries to find a half space Σd

i=1cixi ≥ k such that (1) for every fea-

ture vector [x1, x2, · · · , xd] ∈ S+ such that Σd

i=1cixi ≥ k and (2) for every fea-

ture vector [x1, x2, · · · , xd] ∈ S− such that Σd

i=1cixi < k. If S+ and S− are lin-

early separable, SVM is guaranteed to find a half space. The complexity of SVM is

O(max(n, d) ∗ min(n, d)2), where n is the number of feature vectors and d is the

number of dimensions [8], i.e., the number of values in a feature vector in S+ or S−.

It has been shown that SVM can be extended to learn more expressive classi-

fiers, e.g., polynomial inequalities using the polynomial kernel and conjunctions of

half spaces. In the following, we briefly describe how ALEARNER learns conjunc-

tion of multiple half spaces as the assertions (in the form of c11x1 + c12x2 + · · · ≥
k1 ∧ c21x1 + c22x2 + · · · ≥ k2 ∧ · · ·) adopting the algorithm proposed in [27]. Given the

feature vectors in S+ and S−, we first randomly select a vector s from S− and learn

a half space φ1 to separate s from all vectors in S+. We then remove all vectors s′ in

S− such that φ1 evaluates to false given s′. Next, we select another vector from S−

and find another half space φ2. We repeat this process until S− becomes empty. The

conjunction of all the half spaces φ1 ∧ φ2 ∧ · · · perfectly classifies S+ from S− and is

reported as a candidate assertion.

We remark that we prefer simple assertions rather than complex ones. Thus, we first

apply the primitive templates. We then apply SVM-based learning if no valid assertion

is generated based on the primitive templates. Boolean combinations of primitive tem-

plates are tried last. The order in which the templates are tried has little effect on the

outcome because invalid templates are often filtered through active learning, which we

explain next.

Step 3: Active Learning The assertions generated as discussed above are often not

correct due to the limited number of test cases we learn from, as we have illustrated in

Section 2. This is a known problem in the machine learning community and one remedy

for solving the problem is active learning [9].

Active learning is proposed in contrast to passive learning. A passive learner learns

from a given set of data over which it has no control, whereas an active learner ac-

tively selects what data to learn from. For instance, DAIKON could be regarded as a

passive learner for assertions. It has been shown that an active learner can sometimes

achieve good performance using far less data than would otherwise be required by a

passive learner [30, 31]. Active learning can be applied for classification or regression.

In this work, we apply it for improving the candidate assertions generated by the above-

discussed classification algorithms.

In the following, we explain how active learning is adopted in our work. Once a

candidate assertion is generated, we selectively generate new feature vectors, which

are then turned into new program states so as to improve the assertion. For template-

based learning, we design heuristics to select the data on and near by the classification

boundary for each template. A few examples are shown in the second column of Table 1.

For example, if the assertion is x = c and x is of type integer, the generated feature

vectors would be x = c+ 1 or x = c− 1. For templates with zero coefficients such as

x ∗ y = z, we choose some predefined values on and near by the boundary of x ∗ y = z
as the selected feature vectors.

For SVM-based learning, we adopt the active learning strategy in [23]. The idea is

to select a fixed number (e.g., 5 as in [23]) of data points on the classification boundary

as the selected feature vectors. For instance, if the candidate assertion is 3x + 2y ≥ 5,

we solve the equation 3x + 2y = 5 to get a few pairs of x, y values. Note that if

the candidate assertion contains multiple clauses (e.g., it is the conjunction of multiple

inequalities), we apply the above strategy to each of its clauses (e.g., if it is from a

template, we apply the corresponding heuristics).

After selecting the feature vectors, we automatically mutate the program so as to set

the program state at the program location according to the selected feature vectors. For

instance, if the selected feature vectors are x = 4 and x = 6, we generate two versions

of the program. The first version inserts an additional statement x = 4 right before the

program location in the original program, and the second version inserts the additional

statement x = 6. Next, we run the test cases with the modified programs so as to check

whether the test cases lead to failure or not. If executing a test case with the first version

of the program leads to failure, the program state x = 4 is added to S− or otherwise it is

added to S+. Similarly, if executing a test case with the second version leads to failure,

the program state x = 6 is added to S− or otherwise it is added to S+. Afterwards, we

repeat the classification step to identify new candidate assertions and then apply active

learning again. The process repeats until the assertion converges.

Note that selective sampling may create unreachable states in the program. If the

unreachable states are labeled negative, they do not affect the learning result because

we try to exclude them. If they are labeled positive, we learn an invariant which is

weaker than the ‘actual’ one. It is not a problem as our goal is to learn invariants which

are sufficiently strong to avoid program failure.

4 Implementation and Evaluation

We have implemented the proposed method in a self-contained tool named ALEARNER,

which is available at [1]. ALEARNER is written in Java with 91600 lines of code. In the

following, we evaluate ALEARNER in order to answer the following research questions.

– RQ1: Can ALEARNER generate correct assertions?

– RQ2: Is active learning helpful?

– RQ3: Is ALEARNER sufficiently efficient?

As a baseline, we compare ALEARNER with DAIKON. To have a fair comparison, the

experiments are set up such that ALEARNER and DAIKON always have the same set of

test cases except that the test cases which result in failure are omitted for DAIKON since

DAIKON learns only from the correct program executions.

Our experimental subjects include two sets of programs. The first set contains 425

methods selected from three Java projects on GitHub. Project pedrovgs/Algorithms
is a library of commonly used algorithms on data structures and some math operations;

project JodaOrg/joda-time is a library for working with date and time; and project

JodaOrg/joda-money is a library for working with currency. We apply ALEARNER to

all classes in the first project. For the other two projects, we focus on classes in the

main packages (org.joda.time and org.joda.money) as those classes contain rela-

tively more unit test cases. We select all methods which have at least one passed test

case and one failed test case, except the constructors or the methods that are inherited

without overriding (due to limitation of our current implementation). We systemati-

cally apply ALEARNER to each method, using existing test cases in the projects only.

As shown in Table 5, there are a total of 2137 test cases for all the methods, i.e., on

average 5 per method. We do not generate random test cases for this set of programs, so

as to reduce randomness as well as to evaluate whether ALEARNER works with limited

user-provided test cases only.

The second set contains 10 programs from the software verification competition

(SVComp) repository. These programs are chosen because we can verify the correct-

ness of the learned assertions. The programs are selected based on the following criteria.

First, because ALEARNER is designed for Java programs and the programs in the repos-

itory are in C, we have to manually translate the selected programs into Java. We thus

avoid programs which rely on C specific language constructs. For the same reason, we

are limited to a small set of programs due to manual effort required in translating the

programs. Furthermore, we skip programs with no precondition (i.e., the precondition

is true) and non-deterministic programs. These programs are relatively small, contain

relatively strong user-provided assertions (i.e., a pair of precondition and postcondition

for each program) and no test cases. These 10 programs are not easy to analyze. Most

of them rely on float or double variables and are hard to verify.

We randomly generate 20 test cases for each program. Since these programs take

float or double type numbers as inputs which have a huge domain, we perform a simple

static analysis of the postcondition, to heuristically set the range of random number

generation for generating test cases. For instance, if we are to verify that some variable

is always within the range of [-10, 10], we use an enlarged range (e.g., [-100, 100]) to

generate input values (often for different variables). Furthermore, we manually examine

the results and round the coefficients in the learned assertions to the number of decimal

places that are enough to prove the postcondition based on programs specification.

All experiments are conducted in macOS on a machine with an Intel(R) Core(TM)

i7, running with one 2.20GHz CPU, 6M cache and 16 GB RAM. All details of the

experiments are at [1]. For all the programs, we configure ALEARNER to learn an as-

sertion at the beginning of the method, i.e., a precondition. For each program, if random

test case generation is applied, we repeat the experiment 20 times and report the average

results. We set a time out of 3 minutes so that we terminate if we do not learn anything

(e.g., if SVM could not find a classifier, it usually takes a long time to terminate) or

active learning takes too long to converge.

RQ1: Can ALEARNER generate correct assertions? In this work, we define the cor-

rectness of an assertion in terms of whether there is a correlation between the learned

assertion and whether failure occurs or not. Depending on what the correlation is, the

assertions are categorized into four categories. An assertion is called necessary if it is

(only) a necessary condition for avoiding failure; it is sufficient if it is (only) a sufficient

condition; and correct if it is both necessary and sufficient (i.e., there is no failure if

and only if the assertion is satisfied). Ideally, we should learn correct assertions. Lastly,

an assertion is called irrelevant if it is neither necessary nor sufficient. For instance,

given a program which contains an expression 5/x, assertion true is necessary; x ≥ 2
is sufficient; x 6= 0 is correct; and x > −13 is irrelevant.

We start with the experiment results on the GitHub projects, which are shown in Ta-

ble 2. As shown in column #asse, a total of 243 assertions are learned by ALEARNER,

i.e., ALEARNER is able to learn an assertion at the beginning of 57% of the meth-

ods. For comparison, the second last column shows the corresponding number using

Table 2. Experiment results on GitHub projects

ALEARNER DAIKON ALEARNER wo AL

Project #meth #asse corr necc suff irre #asse corr necc suff irre #asse corr necc suff irre

Algorithms 96 85 61 18 2 4 135 7 9 73 46 88 58 21 3 6

joda-time 236 133 81 49 0 3 307 7 44 71 185 153 22 42 37 52

joda-money 93 25 16 9 0 0 74 5 2 3 64 30 16 9 0 5

DAIKON. It can be observed that ALEARNER learned fewer assertions than DAIKON for

all three projects. This is expected because DAIKON generates one assertion for each of

its templates which is consistent with the test cases (after certain filtering [11]), whereas

an assertion learned by ALEARNER must be consistent with not only the passed test

cases but also the ones which trigger failure.

We first evaluate the correctness of these assertions by manually categorizing them.

Table 2 shows the number of assertions in each category. Note that DAIKON often gen-

erates multiple assertions and it is often meaningless if we take the conjunction of all of

them as one assertion. We thus manually check whether some assertions generated by

DAIKON can be conjuncted to form correct assertions and count them as correct asser-

tions. Necessary and sufficient assertions for DAIKON are counted similarly. Then we

count the rest of DAIKON’s assertions as irrelevant. In comparison, ALEARNER gener-

ates only one assertion at one program location. We can see that ALEARNER success-

fully generates many correct assertions, i.e., 158 out of all 243 (about 65%) are correct.

In comparison, only 19 out of 516 (about 3.7%) assertions learned by DAIKON are

correct, whereas majority of those learned by DAIKON are sufficient only (28%) or ir-

relevant (57%). This is expected as DAIKON learns based on the program states in the

passed test cases only. Given that the number of test cases is limited, often the learned

assertions have limited correctness.

In all three projects, ALEARNER learned more correct or necessary (i.e., over-

approximation) assertions than DAIKON and much fewer sufficient or irrelevant ones.

There are two main reasons why ALEARNER may not always learn the correct as-

sertion. Firstly, ALEARNER may not always be able to perform active learning. For

instance, a field of an object may be declared as final and thus altering its value at

runtime is infeasible. Secondly, the test cases are biased for some methods. For ex-

ample, in one method in project Algorithm, the correct assertion should be tree1 6=
null || tree2 6= null. But in the test cases, only the value of variable tree1 varies (e.g.,

being null in one test and being not null in another) and variable tree2 remains the

same. As a result, ALEARNER learns the assertion tree1 6= null, which is sufficient

but not necessary.

There are cases where ALEARNER cannot learn any assertion. The reason is the cor-

rect assertions require templates which are currently not supported by ALEARNER. For

example, there are multiple methods which take String objects as inputs and throws

RuntimeException if the input String objects do not follow certain patterns, such

as patterns for scientific numbers in Algorithm and patterns for day and time for-

mat in joda-time. In another example, multiple methods throw RuntimeException
if and only if an input object is not of a type which is a subclass of certain class.

ALEARNER does not support templates related to typing and cannot learn those as-

sertions.

We observe that, for 186 out of these 425 methods, the authors have explicitly put

in code which is used to check the validity of the inputs (which is used to prevent the

inputs from crashing the program by causing RuntimeException). This provides an

alternative way of evaluating the quality of the learned assertion. That is, we assume the

conditions used in these checking code are correct assertions and compare them with

the learned assertions. For 116 out of the 186 (62%) methods, the assertion learned by

ALEARNER is the same as the checking condition. In comparison, for only 8 out of the

186 (4.3%) methods, the condition is one of those assertions generated by DAIKON for

the respective method.

Next, we evaluate the assertions generated for the SVComp programs. We formally

verify the correctness of the learned precondition (by either existing program verifier

or referring to the original proof of the program). Table 3 shows the experiment results.

Column correct shows how many times (out of 20) we learn the correct assertion. The

reason that ALEARNER may not always learn the same assertion is the random test

cases could be different every time. Column useful shows the number of times we learn

a useful assertion, i.e., a sufficient condition for proving the postcondition which is

implied by the given precondition. It is useful as it can be used to verify the program

indirectly.

We first observe that DAIKON failed to learn any correct or useful assertion for

these programs with the same passing test cases. One reason is because these programs

require some precise numerical values in the assertions which are often missing from

the randomly generated test cases. For 9 programs, ALEARNER learns useful assertions

most of the time; and for 8 programs, ALEARNER learns the correct assertions. Further,

for all these 8 cases, ALEARNER learns correct assertions which are strictly weaker than

the corresponding precondition, which implies that with ALEARNER’s result, we prove

a stronger specification of the program. For program exp loop, ALEARNER learned the

assertion a 6= 0, which is implied by the given precondition a ≥ 1e−10 && a ≤ 1e10.

However, it is necessary but not sufficient to prove the postcondition c ≥ 0 && c ≤ 1e6.

A closer look reveals that the postcondition is violated if a is greater than 2.1e12 or less

than −2.1e12. Because we never generated a random test case with such huge number,

ALEARNER failed to learn the correct assertion. For program square 8, we discover

that the correct assertion contains two irrational number coefficients, which is beyond

the capability of ALEARNER.

Based on the experiment results discussed above, we conclude that the answer to

RQ1 is that ALEARNER can learn correct assertions and does so often.

RQ2: Is active learning helpful? To answer this question, we compare the performance

of ALEARNER with and without active learning. The results are shown in the last

columns of Table 2 and Table 3. Without active learning, the number of learned asser-

tions and irrelevant ones increases. For instance, for methods in joda-time, the number

of irrelevant assertions increases from 3 (i.e., 2%) to 52 (i.e., 34%). Furthermore, with-

out active learning, we almost never learn correct assertions for the SVComp programs.

This is expected as without active learning, we are limited to the provided test cases and

many templates cannot be filtered. As the correct assertions for these programs contain

Table 3. Experiment results on SVComp programs

ALEARNER DAIKON ALEARNER wo AL

subject useful correct useful correct useful correct

exp loop 0 0 0 0 0 0

inv sqrt 20 20 0 0 0 0

sqrt biN 12 11 0 0 1 0

sqrt H con 15 15 0 0 0 0

sqrt H int 13 12 0 0 0 0

sqrt H pse 15 13 0 0 0 0

sqrt N pse 13 10 0 0 0 0

square 8 15 0 0 0 0 0

zono loose 16 16 0 0 9 1

zono tight 14 14 0 0 11 2

Table 4. DAIKON results with selective sampling

corr necc suff irre

Without AL test cases 0 0 28 13

With AL test cases 0 0 2 8

specific numerical values, active learning works by iteratively improving the candidate

assertions until the correct numerical values are identified.

Next, we conduct experiments to see whether the additional programs states gen-

erated by ALEARNER during active learning could be used to improve DAIKON. The

rationale is that if it does, active learning could be helpful not only for ALEARNER but

also DAIKON. We randomly selected about 10% of the methods (43 of them), created

additional test cases based on the new program states, then feed those test cases (to-

gether with the provided ones) to DAIKON. The results are shown in Table 4. We can

see that with additional test cases, DAIKON can filter a lot of sufficient and irrelevant

assertions. We conclude that active learning is helpful for ALEARNER and may poten-

tially be helpful for DAIKON.

RQ3: Is ALEARNER sufficiently efficient? To answer this question, we would like to

evaluate whether the overhead of active learning is acceptable. Table 5 shows the exe-

cution time of ALEARNER (with and without active learning) as well as DAIKON’s. In

addition, we show the lines of the code in the projects and the number of test cases we

use to analyze methods since they are relevant to the efficiency. It can be observed that

ALEARNER is slower than DAIKON (about one order of magnitude), which is expected

as ALEARNER relies on learning algorithms which are more time consuming than tem-

plate matching in DAIKON. On average ALEARNER takes about 40 seconds to learn an

assertion, which we consider as reasonably efficient for practical usage. Without active

learning, ALEARNER runs faster but only by a factor of 2, which means active learning

converges relatively quickly. Given that the quality of the generated assertions improve

with active learning, we consider the overhead is acceptable.

Table 5. Experiment results on efficiency

Project LOC #tests ALEARNER(w/wo AL)(s) DAIKON(s)

Algorithms 6512 414 2496/1682 223

joda-time 85785 1163 5970/4701 665

joda-money 8464 560 1947/1739 236

SVComp 276 200 471/193 22

Threat to Validity Firstly, we acknowledge that the subjects used for evaluation might

be biased. Though the three GitHub projects are selected randomly, they may not be

representative of other projects. So are the programs from the SVComp repository. Sec-

ondly, although we did our best to configure DAIKON to achieve its best performance, it

is not impossible that experts on DAIKON may be able to tune it for better performance.

The issue of lacking test cases is a fundamental limitation for DAIKON.

5 Related Work

This work is closely related to the line of work on dynamic invariant generation, a

technique pioneered by Ernst et al. to infer likely invariants. In particular, ALEARNER is

inspired by DAIKON [11, 12]. DAIKON executes a program with a set of test cases. Then

it infers precondition, postcondition, and loop invariant by checking the program states

against a set of predefined templates. The templates that satisfy all these program states

are likely invariants. Nguyen et al. extends DAIKON’s approach by proposing some

templates that can describe inequality, nested array [18], and disjunction [19]. They

also propose to validate the inferred invariants through k-induction.

ALEARNER is different from the above-mentioned approaches. Firstly, above ap-

proaches learn invariants through summarising the program states of the passed test

cases using some templates. ALEARNER learns not only from the passed test cases but

also the failed ones. Therefore, it is able to learn assertions with a number of templates

which cannot be supported otherwise. Secondly, ALEARNER relies on active learning

to overcome the lack of user-provided test cases, which we believe is a threat to the

usefulness of the above-mentioned test cases based learning tools.

Our approach is related to iDiscovery [35], which improves invariants in DAIKON by

generating more test cases based on current candidate invariants and symbolic execu-

tion. In comparison, ALEARNER avoids symbolic execution. Moreover, because iDis-

covery uses DAIKON to generate invariants, it only learns from passed test cases. Xie

and Notkin also propose an approach similar to ours, in which test cases generation

and specification inference are enhanced mutually [34]. Their work, however, does not

provide any experiment results.

Sharma et al. proposed a number of guess-and-check approaches to infer loop in-

variants. They categorize program states into two sets of good and bad states. Several

learning algorithms are used to learn a predicate that can separate these two sets, such

as PAC learner [26], null space [25], or randomised search [24]. The predicate is then

checked by a verifier to see if it is valid loop invariant. If it is not, verifier returns a coun-

terexample and the counterexample is used to improve the learned predicate. Garg et al.

extend above idea by introducing ICE framework [13] and a method to learn invariants

by solving a SMT formula. A new method using decision tree to learn invariants in

ICE framework is presented in [14]. Krishna et al. also use decision tree to learn invari-

ant in their approach [16]. These guess-and-check methods can infer correct invariants.

However, they rely on the program verification and thus are limited to relatively simple

programs. In comparison, our approach relies on machine learning techniques.

Padhi et al. present the idea of learning precondition to avoid exception with a

method that can add more features in the learning process automatically [21]. In [22],

the authors use decision tree to learn likely precondition from a partial truth table of a

set of predicates. Lastly, our idea of using SVM to learn assertions is inspired by [27,

33, 29]. However, those works have very different goals from this one.

6 Conclusion

In this work, we present an approach that can infer likely assertions from complex

Java programs. The novelty in our approach is to apply active learning techniques to

learn and refine assertions. While active learning helps to overcome the issue of lack-

ing test cases in many cases, the effectiveness of ALEARNER is still dependent on the

availability of certain test cases. For instance, if a failure occurs only if some complex

path conditions are satisfied and there are no test cases for triggering that exception,

the condition to avoid that failure will not be learned. To solve the problem, we would

like to use more systematic test case generation techniques to get better initial test cases.

Acknowledgments. This research was funded by the project T2MOE1704.

References

1. http://sav.sutd.edu.sg/alearner.

2. http://sv-comp.sosy-lab.org/2016/.

3. R. Alur, P. Černỳ, P. Madhusudan, and W. Nam. Synthesis of interface specifications for java

classes. In POPL, pages 98–109. ACM, 2005.

4. M. Beller, G. Gousios, A. Panichella, and A. Zaidman. When, how, and why developers (do

not) test in their IDEs. In ESEC/FSE, pages 179–190. ACM, 2015.

5. M. Beller, G. Gousios, and A. Zaidman. How (much) do developers test? In ICSE, pages

559–562. IEEE, 2015.

6. M. Boshernitsan, R. Doong, and A. Savoia. From daikon to agitator: lessons and challenges

in building a commercial tool for developer testing. In ISSTA, pages 169–180. ACM, 2006.

7. N. H. Bshouty, S. A. Goldman, H. D. Mathias, S. Suri, and H. Tamaki. Noise-tolerant

distribution-free learning of general geometric concepts. JACM, 45(5):863–890, 1998.

8. O. Chapelle. Training a support vector machine in the primal. Neural Computation,

19(5):1155–1178, May 2007.

9. D. Cohn. Active learning. In Encyclopedia of Machine Learning, pages 10–14. 2010.

10. C. Csallner, N. Tillmann, and Y. Smaragdakis. DySy: Dynamic symbolic execution for

invariant inference. In ICSE, pages 281–290. ACM, 2008.

11. M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering likely

program invariants to support program evolution. IEEE Transactions on Software Engineer-

ing, 27(2):99–123, 2001.

12. M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and C. Xiao.

The daikon system for dynamic detection of likely invariants. Science of Computer Program-

ming, 69(1):35–45, 2007.

13. P. Garg, C. Loding, P. Madhusudan, and D. Neider. ICE: A robust framework for learning

invariants. In CAV, pages 69–87. Springer, 2014.

14. P. Garg, D. Neider, P. Madhusudan, and D. Roth. Learning invariants using decision trees

and implication counterexamples. In POPL, pages 499–512. ACM, 2016.

15. C. A. R. Hoare. Assertions: A personal perspective. IEEE Annals of the History of Comput-

ing, 25(2):14–25, 2003.

16. S. Krishna, C. Puhrsch, and T. Wies. Learning invariants using decision trees. arXiv preprint

arXiv:1501.04725, 2015.

17. L. Li, Y. Lu, and J. Xue. Dynamic symbolic execution for polymorphism. In CC, pages

120–130. ACM, 2017.

18. T. Nguyen, D. Kapur, W. Weimer, and S. Forrest. DIG: A dynamic invariant generator for

polynomial and array invariants. ACM Transactions on Software Engineering and Method-

ology, 23(4):30, 2014.

19. T. Nguyen, D. Kapur, W. Weimer, and S. Forrest. Using dynamic analysis to generate dis-

junctive invariants. In ICSE, pages 608–619. ACM, 2014.

20. C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball. Feedback-directed random test generation.

In ICSE, pages 75–84. IEEE, 2007.

21. S. Padhi, R. Sharma, and T. Millstein. Data-driven precondition inference with learned fea-

tures. In PLDI, pages 42–56. ACM, 2016.

22. S. Sankaranarayanan, S. Chaudhuri, F. Ivančić, and A. Gupta. Dynamic inference of likely

data preconditions over predicates by tree learning. In ISSTA, pages 295–306. ACM, 2008.

23. G. Schohn and D. Cohn. Less is more: Active learning with support vector machines. In

ICML, pages 839–846, 2000.

24. R. Sharma and A. Aiken. From invariant checking to invariant inference using randomized

search. In CAV, pages 88–105. Springer, 2014.

25. R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. V. Nori. A data driven

approach for algebraic loop invariants. In ESOP, pages 574–592. Springer, 2013.

26. R. Sharma, S. Gupta, B. Hariharan, A. Aiken, and A. V. Nori. Verification as learning geo-

metric concepts. In SAS, pages 388–411. Springer, 2013.

27. R. Sharma, A. V. Nori, and A. Aiken. Interpolants as classifiers. In CAV, pages 71–87.

Springer, 2012.

28. F. Somenzi and A. R. Bradley. IC3: where monolithic and incremental meet. In FMCAD,

pages 3–8, 2011.

29. J. Sun, H. Xiao, Y. Liu, S. Lin, and S. Qin. TLV: abstraction through testing, learning, and

validation. In ESEC/FSE, pages 698–709. ACM, 2015.

30. S. Tong and E. Y. Chang. Support vector machine active learning for image retrieval. In

MULTIMEDIA, pages 107–118. ACM, 2001.

31. S. Tong and D. Koller. Support vector machine active learning with applications to text

classification. Journal of Machine Learning Research, 2:45–66, 2001.

32. Y. Wei, C. A. Furia, N. Kazmin, and B. Meyer. Inferring better contracts. In ICSE, pages

191–200. ACM, 2011.

33. H. Xiao, J. Sun, Y. Liu, S. Lin, and C. Sun. Tzuyu: Learning stateful typestates. In ASE,

pages 432–442. IEEE, 2013.

34. T. Xie and D. Notkin. Mutually enhancing test generation and specification inference. In

FATES, pages 60–69. Springer, 2003.

35. L. Zhang, G. Yang, N. Rungta, S. Person, and S. Khurshid. Feedback-driven dynamic invari-

ant discovery. In ISSTA, pages 362–372. ACM, 2014.

